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Ab initio self-consistent theory of ionic diffusion in 
superionic conductors with an internal interface 
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The kinetic equation of the hopping diffusion in a one-dimensional chain with an internal 
interface between a superionic conductor and an intercalate, is presented in a new form, 
which explicitly takes into account the effect of Coulomb correlations. Numerical results are 
presented for material parameters corresponding to the system: ternary borate 
glass-indium selenide, which is often used in solid microbatteries. 

1. Introduction 
Many properties of materials in high-technology ap- 
plications are strongly influenced by the presence of 
solid interfaces. An example is the solid interface of the 
disordered system-intercalate, and the study of its 
properties is important for the development of solid- 
state microbatteries, fuel cells and microsensors. The 
progress in this field has been reviewed recently Eli. 
Previous reviews of the general structural and trans- 
port properties of disordered materials and superionic 
conductors can be found elsewhere [2, 3]. 

In particular, the exploration of transport pro- 
perties of one-dimensional disordered chains is of 
interest to a better understanding of the process of ion 
diffusion in substances such as glasses and superionic 
conductors. These materials have atomic arrangement 
with a relatively large degree of disorder and random- 
ness. Being one-dimensional this model is relatively 
simple and the corresponding calculations are, in gen- 
eral, tractable in contrast to the much more complic- 
ated two- and three-dimensional cases. 

For  a theoretical description of ion diffusion across 
solid interfaces, the lattice-gas model is suitable. 
A model of this kind for a one-dimensional lattice with 
internal interface was proposed by Blender et al. [43. 
Later, this model was generalized to include the inter- 
face energy [5], the random hopping rates in one of 
the sub-lattices, and also site-blocking [6], and the 
effect of Coulomb correlations [73. 

In our previous work [7] we have demonstrated 
that it is necessary to take into account the Coulomb 
correlations in the theory of hopping diffusion. This 
makes the treatment more realistic, but non-linear 
and more difficult and time consuming to solve com- 
pared to the linear case [4, 5]. The major difficulty 
consists of the requirement to choose a very small 

time step when integrating the diffusion equation, 
and to account for the Coulomb correlations at every 
intermediate time step by modifying the self-consistent 
potential along the chain, which is obtained by solving 
the Poisson equation. In this way, self-consistent solu- 
tions for the ion density and the potential can be 
obtained, but it is difficult to control the error of the 
solution, which usually increases with diffusion time. 
The object of this paper is to present a new formula- 
tion of the kinetic equation of the hopping diffusion 
along a one-dimensional chain, which will be self- 
consistent, accurate and numerically tractable for all 
diffusion times. 

2. The kinetic equation 
Consider a one-dimensional chain with N points and 
an internal interface. The general form of the kinetic 
equation, which describes the hopping diffusion of 
ions along this chain is given by 

dnidt - ~'~ Ibijn~(l nj) - bj~nj(l ni)l - 

where n~ is the ion density, the subscripts i, j denote 
configurations and b u are hopping rates, which are 
assumed to fulfil the conditions for detailed balance 
b u = bji. 

The kinetic equations resulting from the lattice-gas 
model of hopping diffusion along the chain, when one 
starts from some initial distribution, are given by 
Equations 1-3 in E4]. The effect of the Coulomb 
correlations is included in the formalism through the 
solution of the Poisson equation, as described by 
Nachev and Balkanski [7]. Here, a new form of the 
kinetic equation is proposed, which explicitly takes 
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into account the effect of the Coulomb correlations. 
This equation replaces Equations 1-3 in [4], and is 
given by 

(i = N) edges of the chain are assumed in the kinetic 
Equation 2a c. 

dna 

dt 
-- b2n2(1 -- nl)exp(v~nl) 

- blnl(1 - n a ) e x p ( -  7~nl) (2a) 

d n i  _ b i - l n i - a ( 1  - ni)exp - 7r ~ nj 
dt )=1  

- b i n i ( 1  - ni-1)exp 7~ ~ nj 
\ j = l  

+ b i + t n i + l ( 1  --  ni)exp n~ 
1 

i 

( i = 2  . . . .  N - 1) (2b) 

d n N  _ b N _ l n N _ [ ( ]  _ _  nu)exp y~j 
dt - nj 

( 41) - b N n N ( 1  - -  ns-1)exp nj- (2c) 

where the subscript i denotes a site of the lattice, n~ is 
the ion concentration along the chain and b~ are the 
hopping rates between two lattice sites, which are first 
neighbours. Part  of b~ could be random in the glassy 
part of the chain. When deriving the kinetic Equation 
2a -c  it was assumed that the hopping rates depend 
exponentially on the barrier height and on the inverse 
temperature in Arrhenius form. 

A factor gr, which depends on the material para- 
meters and which has different values on both sides of 
the interface (r = 1, 2), can be defined as 

2 2 e d, 
(3) 

9r - -  2 k B T ~ ; o G  

where 

{~ = 1: ~glass (i = 1 . . . .  ,N in t )  

~r = 2: a~s~ (i = Nim + 1, . . . ,N)  

and the interface is between lattice sites Nim and 
Nin  t @ 1. 

When the ion concentration n~ along the chain is 
considered as the occupation probability of the corres- 
ponding site i (i = 1 , . .  ,N), then the factor ~r in 
Equation 3 is dimensionless and is given by the follow- 
ing expression, used in Equation 2a -c  

c 2 

7~ = 2 k B T s o e ~ d ~ N  3 (4) 

The site-blocking effect is accounted in Equations 
1 and 2 through the factors ( 1 -  n) and the other 
symbols have their usual meaning: e is the elemental 
charge, T is the temperature, /% is the Boltzmann 
constant, d is the average distance between two sites of 
the chain and the absolute and relative permeability 
are denoted by ~0 and ~r, respectively. Reflecting 
boundary conditions on the left (i = 1) and right 

3. Numerical results and discussion 
The material parameters in our numerical examples 
will be specified for the solid interface between a ter- 
nary borate glass and indium selenide. The hopping 
rates in these materials can be obtained by dielectric 
loss measurements and overvoltage measurements, re- 
spectively, as described elsewhere [1, 8]. From these 
measurements, the hopping rates in lithium-doped 
ternary borate glass B203-0.5LizO-0.15Li2SO4 are 
estimated to be a ~ 3 x 104 s-1 for T = 460 K. The 
hopping rates in lithium-doped indium selenide 
LiyInSe are estimated to be 104 107 s-  1 for y = 0 1. 
Therefore, we can denote the hopping rates in the 
glass by b i  = cx (1 + qri), where ri are random num- 
bers in the range (0 1) and Iql < 1 is a factor, which 
controls their magnitude around cx. The hopping rates 
in the intercalate LiyInSe will be considered as con- 
stant: bi = ~a, where ~ is a parameter of the model. 
The relative dielectric constants in Equations 3 and 
4 are agl,ss = 7.4 and ~InSe = 8.5 [8] and dl ~ d2 --- 

0.4 nm [9]. 
Solutions of the kinetic Equation 2a c are plotted 

in Fig. 1 for ~ = 6, q = 0.05 and different diffusion 
times t = 0, 500At, 1000At and 1500At. The time step 
At for the integration of Equation 2a -c  is specified to 
be At = 5 x 10-7 s-~. The initial distribution at t = 0 
is step-like right at the interface. The diffusion profiles 
for higher times (t > 0) are asymmetric around the 
interface because of the different material parameters 

mainly the values of the hopping rates. One can also 
study solutions on the kinetic Equation 2 for other 
initial distributions, but the step-like distribution was 
chosen here because it corresponds to the real case 
when lithium ions diffuse from doped ternary borate 
glass to the intercalate InSe in the cathode of a solid 
microbattery. 

The time dependence of the edge ion concentration 
n i = u ( t )  on the right side of the chain is an important 
function because it shows how ions diffuse through 
thin films. This is plotted in Fig. 2 for relatively long 
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Figure 1 Solutions of the kinetic Equat ion 2a c for different diffu- 
sion times, measured in units of At. The initial distribution (t = 0) is 
step-like and the parameters of this example are given in the text. 
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Figure 2 The time dependence of the edge ion concentration ni=N(t) 
for ~ = 7, N = 60 and 1"1 = 0.05. The diffusion time is measured in 
units of At. 

diffusion time, which is measured in units At. Owing to 
the reflecting boundary conditions imposed on the 
kinetic Equation 2a-c,  this curve will saturate asymp- 
totically (t ~ ~ ) to the mean ion concentration. 

In summary, a new form of the kinetic equation of 
the hopping diffusion of ions in one-dimensional chain 
with internal interface is proposed. This form is ab 
initio self-consistent for all diffusion times. Numerical 
solutions of this equation are presented, which model 
the transport of lithium ions across a material inter- 
face in a solid microbattery. The software, used in the 

present simulations, is written on FORTRAN 77 and 
is available upon request. 
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